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1 Introduction

Object recognition is one of the most ubiquitous problems in computer vision, arising in a wide

range of applications and tasks. As a consequence, considerable effort has been expended in

tackling variations of the problem, with a particular emphasis recently on model-based meth-

ods. In the standard model-based approach, a set of stored geometric models are compared

against geometric features that have been extracted from an image of a scene (cf. [4, 11]).

Comparing a model with a set of image features generally involves finding a valid correspon-

dence between a subset of the model features and a subset of the image features. For a

correspondence to be valid, it is usually required that there exist some transformation of a

given type mapping each model feature (roughly) onto its corresponding image feature. This

transformation generally specifies the pose of the object - its position and orientation with

respect to the image coordinate system. The goal thus is to deduce the existence of a legal

transformation from model to image and to measure its 'quality'. In other words, the goal is

to determine whether there is an instance of the transformed object model in the scene, and

the extent of the model present in the data.

More formally, let {F 1 1 < i < m} be a set of model features measured in a coordinate

frame M, let {fi11 < i < s} be a set of sensory features measured in a coordinate frame S,

and let T : M -. S denote a legal transformation from the model coordinate frame to the

sensor coordinate frame. The goal is to identify a correspondence, I C 2 x', that pairs model

features with sensor features. Each such correspondence I specifies some transformation T1

which maps each model feature close to its corresponding image feature. 2 That is

I- {(mi,sj)Ip(TImi,sj) • c},

where p is some appropriate measure (e.g. Euclidean distance in the case of point features, or

maximum Euclidean separation in the case of line features) and E is some bound on uncertainty.

In general the quality of such an interpretation is measured in terms of the number of pairs

of model and image features, or the cardinality of I, III. The goal of recognition is generally

either to find the best interpretation, maximizing 111, or all interpretations where III > t for

some threshold t.

Many of the approaches to the recognition problem can be distinguished by the manner in )r

which they search for solutions. One class of methods focuses on finding the correspondence

I, typically by searching a potentially exponential sized space of pairings of model and data 0
_ _L_-__ _ _-

2A given interpretation I will in fact generally define a range of 'equivalent' transformations in the sense

that there are a number of transformations that generate the same set 1.
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features (e.g. [5, 7, 10, 11]). A second class of methods focuses on finding the pose T, typically

by searching a potentially infinite resolution space of possible transformations, (e.g. [2, 8, 9, 18,

19, 20, 21, 22]). A third class of methods is a hybrid of the other two, in that correspondences

of a small number of features are used to explicitly transform a model into image coordinates

(e.g., [1, 3, 6, 16, 17]) guiding further search for correspondences.

We are primarily interested in methods in the second and third classes, because they

compute transformations from model coordinate frame to image coordinate frame using a

small number of feature pairs. When the sensor data can be measured exactly, the fact that

a small number of features are used to compute a pose does not cause problems. For real

vision systems, however, there is generally uncertainty in measuring the locations of data

features, and resulting uncertainty in the estimated pose. In this paper we develop methods

for bounding the degree of uncertainty in a three-dimensional transformation computed from

a small number of pairs of model and image points. The specific pose estimation method that

we investigate is that of [16, 17], however the results are very similar for a number of other

methods (e.g., [23, 24]). This pose estimation method uses the correspondence of 3 model

and image features to compute the three-dimensional position and orientation of a model with

respect to an image, under a 'weak perspective' imaging model (orthographic projection plus

scaling).

The central idea of most pose-based recognition methods (such as alignment, geometric

hashing, generalized Hough transform) is to use a small number of corresponding model and

image features to estimate the pose of an object acting under some kind of transformation.

The methods then differ in terms of how the computed pose is used to identify possible

interpretations of the model in the image. The pose clustering and pose hashing methods

compute all (or many) possible transformations, and then search the transformation space for

clusters of similar transformations. In contrast, the alignment approaches explicitly transform

the model into the image coordinate frame. The effects of pose errors in these two cases will

be different, and we analyze the two cases separately.

Implementation and testing of pose-based recognition methods has been reported in the

literature, with good results. An open issue, however, is the sensitivity of such methods to noise

in the sensory data. This includes both the range of uncertainty associated with a computed

transformation, and the effect of this uncertainty on the range of possible positions for other

aligned model features. The answers to these questions can be used to address other issues, such

as analyzing the probability of false positive responses, as well as using this analysis to build

accurate verification algorithms. In addressing these issues, we first derive expressions for the

degree of uncertainty in computing the pose, given bounds on the degree of sensing uncertainty.
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Then we apply these results to analyze pose clustering methods, and alignment methods. The

big difference between these methods is that the former methods operate explicitly in the

space of possible poses (or transformations), whereas the latter methods operate in the space

of image measurements.

Previous Results

Some earlier work has been done on simpler versions of these questions, such as recognition that

is restricted to 2D objects that can rotate and translate in the image plane [12] or recognition

that is restricted to 2D objects that can be arbitrarily rotated and translated in 3D, then

projected into the image plane [14]. While these are useful for analyzing particular cases

of recognition, we are interested in extending these results to the full case of a non-planar

3D object undergoing arbitrary rigid motion (under a 'weak perspective' imaging model of

orthographic projection plus scaling).

2 Computing 3D Pose from 2D data

The pose estimation technique that we evaluate in detail is that of [16, 17], though similar re-

sults hold for other techniques that use a small number of points to estimate three-dimensional

pose. This method of computing the pose operates as follows: We are given three image points

and three model points, each measured in their own coordinate system; the result is the trans-

lation, scale and three-dimensional rotation that position the three model points in space such

that they map onto the image points under orthographic projection. The original specification

of this method assumes exact measurement of the image points is possible. In contrast, our

development here assumes that each image measurement is only known to within some uncer-

tainty disc of a given radius, E. We speak of the nominal measured image points, which are the

centers of these discs. The measured points can be used to compute an exact transformation,

and then we are concerned with the variations in this transformation as the locations of the

image points vary within their respective discs.

Let one of the measured image points be designated the origin of the points, represented by

the vector 6, measured in the image coordinate system. Let the relative vectors from this point

to the other two points be Aii and fi, also measured in image coordinates. Similarly, let 0, M

and 9 denote the three model vectors corresponding to 6, in' and 4, measured in a coordinate

system centered on the model. For convenience, we assume that the model coordinate origin

is in fact at 05 (see Figure la). We also assume that the model can be reoriented so that M

and 9 lie in a plane parallel to the image plane. Note that we use the notation 9 for general

3



Figure 1: Computing the pose. Part a: A pair of basis vectors in the image have been selected, as well as

a pair of model basis vectors. The origin of the model basis is assumed to project to the origin of the image

coordinate system. Part b: After the translation, the origin point of the selected model basis projects to the

origin of the selected image basis. Part c: After the first rotation, the first model axis projects along the first

image axis. Part d: After the next two rotations, both model axe" project along their corresponding image

axis, such that the ratios of the lengths of the axes are the same in the projected model and the image.

vectors, and i for unit vectors. Also note that we assume that the optic axis is along $-.

Our version of the pose estimation algorithm is summarized below. The method described

in [16] is similar, but for 2D objects. The method in [17], for 3D objects, is more direct and

appears to be numerically more stable. The method used here, however, more readily lends

itself to error analysis of the type desired (and the two methods are equivalent except for

numerical stability issues). In particular, the method used here allows us to isolate each of the

six transformation parameters into individual steps of the computation.

For the exact transformation specified by the measured sensory data, the steps are:

1. Translate the model so that the origins align. A point f is then transformed to P6' by:

P = P+6- 11ý0

where 11; denotes projection along the i axis (see Figure 1b).

2. Rotate the model by an angle 0 about the axis parallel to i and emanating from &' so

that II•-; lies along ni, leading to the transformation

p" = R4,,p'



m.4

where R;,V, denotes a rotation of angle 0 about the unit axis i (see Figure 1c).

3. Rotate the model by an angle 0 about the new M", leading to the transformation

,Pm = Rk,,9  "

4. Rotate the model by an angle 4 about An' deJ x fn (Figure 1d), leading to

=" R± P"UI

5. Scale by s so that

sIl-79" = fn.

The constraints on the process are that N"" should project along ft with scaled length

sN = n, and 9'" should project along fn with scaled length sM = m.

Now suppose that we don't know the image points exactly, but only to within a disc of

radius c. We want to know the effect of this on the computed transformation, i.e. what is

the range of uncertainty in each of the transformation parameters if each of the image points

is allowed to vary over an c-disc? We divide this analysis as follows. First we consider the

transformation that aligns the model origin and the two model vectors with the image origin

and the two image vectors. The translation is explicit in this computation, and we note that

its error is simply bounded by the image uncertainty, c. We then derive expressions for the

remaining transformation parameters, 4b, 0, 4i and s, which are only implicit in the alignment

of the model vectors with the image vectors. Given these expressions we are then able to

characterize the effects of sensor uncertainty on these parameters.

3 Aligning the Basis Vectors

First we note that the translation which brings the model origin into correspondence with the

image origin, as specified in Step 1 of the method, simply has an uncertainty of c, the sensor

uncertainty.

We have some freedom in choosing the model coordinate system, and in particular, we

choose the coordinate frame such that both A? and N are orthogonal to the optic axis i. In

this case, given the measured image data, the angle •' is:

=f-Mf- (X?,in-)=cosio(1

(1Mxfn=i - (ft,6.) = sinO~. (2)
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Because there will be some uncertainty in computing 0, due to the uncertainty C in the

image points, the first rotation, using Rodrigues' formula, transforms a vector into

P R,,+6P= cos(tP + 60b)P' + (1 - cos(O + 6bt)) (.P, i') i + sin(Ot + 6,0~) (i x Pi) . (3)

By this we mean that V, denotes the nominal correct rotation (i.e. the rotation that correctly

aligns the model with the measured image data, without the uncertainty bounds) and 6b

denotes the deviation in angle that could result from the E-bounded uncertainty in measuring

the position of the image point.

If we use the small angle approximation for bO, by assuming 1•1 < 1, then we have

,,RP + .(4)

For the special case of j' = M, we have

i - + b,• (5)

Note that the right hand side is not a unit vector, but to a first order approximation, the

expression is sufficient, since we have assumed that 16,I < 1. Also note that this assumption is

reasonable, so long as we place lower limits on the length of an acceptable image basis vector,

i.e. we ensure that the length of the vector separating two basis points in the image is much

greater than E.

The second rotation has two components of uncertainty:

P"6= R6+5,k.L,0+6 • (6)

We could expand this out using Rodrigues' formula, and keep only first order terms in 6b and

6M, under a small angle assumption. Unfortunately, we have found experimentally that while

we can safely assume that 6b is small, we cannot safely make the same assumptions about 6b

or 6M. Intuitively this makes sense, because the remaining two rotations 0 and 0 are the slant

and tilt of the model with respect to the image, and small changes in the image may cause

large changes in these rotations. Thus, we need to keep the full trigonometric expressions:

P cos( +An)[f, i± i + ( P, fnz) fnz

+6,bsin(O + 6M) (&ihL X (7)

By a similar reasoning, the third rotation gives:

= , + . (8)
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Now suppose we decompose a point P' into the natural coordinate system:

P'I = affi + fl+7.

Then this point is transformed to

.fI"I = zII'I+f3,s "'UI +-4".

Thus, to see the representation for the transformed point, we simply need to trace through

the transformations associated with each of the basis vectors.

Using equations (4), (7) and (8), we find that rotating the basis vectors, then projecting

the result into the image plane (i.e. along i) yields (keeping only first order terms in 6tb)

[cos(O + 6b) {cos , - 6•b sin 0, cos(O + 69)} + sin 0' sin(O + 69) sin(O + 6b)] fin

+ [6b cos ib + sin 0' cos(O + 69)] f'. (9)

II&'z".' = [cos(O + 6b) {- sin b - 6•b cos 0 cos(O + 69)} + cosO sin(O + 69) sin(O + 64b)] fn

+ [-6ib sin b + cos 0 cos(O + 60)] f.i'. (10)

I .. = [6b cos(4 + 6qb) sin(0 + 60) + cos(0 + 60) sin(o + 6•b)] ffi - sin(9 + 60)fin-. (11)

Thus far we have seen how to align the basis vectors of the model with the basis vectors

measured in the image, by a combination of two-dimensional translation and three-dimensional

rotation. Before we can analyze the effects of uncertainty on the rotation and scale parameters,

we need to derive expressions for them.

4 Computing the Implicit Parameters

Now we consider how to compute the remaining parameters of the transformation, and char-

acterize the effects of uncertainty on these parameters. There are some special cases of the

transformation that are of particular importance to us. First, consider the case of P, = R.

We have chosen the model coordinate system so that in this case

a = M cos V) 0 = -Msin= 0

and thus

sll7... = sM cos(O + 6b)ih + sMtibi'n, (12)

where M is the length of the vector M.

7



If we first consider the transformation that aligns the model with the measured image

points (not accounting for the uncertainty in the image measurements), we want the scaled

result to align properly, i.e.

sf.MR-I 6 =o = m-fi.

This simply requires that
m

s = .- secol. (13)

Note that we only want positive scale factors, so we can assume that sec 4 Ž 0, or that

Ir 
'r

2- -i"

The error vector associated with the transformed 9 is then

10M = m sec 0bVn- + m [cosbo -- tan 0 sin &b - 1) i. (14)

We can use this result to put constraints on the range of feasible transformations, and then

on the range of feasible positions for other aligned points.

Since there is an E-disc of error associated with the two endpoints of fn, there will be a

range of acceptable projections. One way to constrain this range is to note that the magnitude

of the error vector should be no more than 2c. (This is because the translation to align origins

has an uncertainty disc of E and the actual position of the endpoint also has an uncertainty

disc of c.) This then implies that

EMI2• 40

or, with substitutions, that

[cos 4b - tan ksin 64 - 112 + (1 + tan2 4)(6•)2 < 4 (15)

We could also derive slightly weaker constraints, by requiring that the components of the

error vectors F in each of the directions ih and-ai,-- be of magnitude at most 2E. In this case,

we are effectively using a bounding box rather than a bounding disc of uncertainty. This leads

to the following constraints:

1601 _< 2Icos 0l (16)

Icos6b-1-tanoksin61 <_ 2f (17)

We need to do the same thing with I9 and fi. As noted earlier, we can choose the model

coordinate system so that N has no z component. This means we can represent N• by

N' = Ncos ýMt + N sin ,ýaM

8



where f is a known angle. Similarly, we can represent the corresponding image vector by

i = n cos wiz + n sin wfn±

where w is a measurable angle. This means that the nominal (i.e. no error) projected trans-

formation of N is:

mN m N[cos f cos 0 + sin f sin 0 sin O] fn + 7- [sinfcos0]6iz-. (18)
Cos Mos

But in principle this is also equal to

S= n cos wf + n sin wi±

and by equating terms we have

m N
n N [cosfcos¢+ sinfsin4sin0] = cos4cosw (19)
nM

mN
nM'[sin~cos6] = cosq~sinw. (20)

These two equations define the set of solutions for the transformation parameters € and 0.

(Note that the set of solutions for 0 is given by equations (1) and (2).) There are several ways

of solving these implicit equations in the variables of interest, namely 4 and 0. One way is

given below. First, let
mN
nM"

We can rewrite these equations as explicit solutions for 0:

Cos0 = sin w cos
17 sinf

sinG =cos ¢(cosw - '7cos)
sin0 = c(21)r7 sin ý sin

This gives us a solution for 0 as a function of 0. To isolate 4, we use the fact that sin 2 O+cos2 6 =

1, and this leads to the following equation:

sin2 WCos 4o- [r72 + 1 - 217cosw cos Cos2 ( + 172 sin 2 0. (22)

This is a quadratic in cos 2 0, as a function of known quantities, and hence the two solutions

will yield a total of up to four solutions for coso. But since we want s > 0, we know that

cos 0 >_ 0, and so at most two of these solutions are acceptable:

Co 1 - 21lcosw cosf• + 172 ± V/(1 - 2r7 cos w cos f + 772)2 - 4172 sin2 w sin 2 f 23

cos 4 = 2sin2 ) (23)

9



Note that this gives real solutions only if

1 + /2
cos cos 2: _ q (24)

Also note that we need cos4 _• 1 so that if this does not hold in the equation, we can exclude

the cases as being impossible. If there are two real solutions for 0, they can be used with

equation (21) to find solutions for 0. Note that solutions to equation (22) will be stable only

when sin w is not small. This makes sense, since the unstable cases correspond to image bases

in which the basis vectors are nearly (anti-)paralel.

The complete version of transforming N is given by:

sN [cos • cos(4 + 6b) + sin • {sin(8 + 66) sin(O + 64) - 6ib cos(O + 68) cos( + v6))]I n

+ sN [cosE6V5+sin cos(8+b8)]ih-L. (25)

Similar to our analysis of the error associated with the transformed version of AM, we can

set the magnitude of the difference between this vector and the nominal vector to be less than

2c, or we can take the weaker constraints of requiring that the components of the error vector

in two orthogonal directions each have magnitude at most 2c. One natural choice of directions

is R and if but a more convenient, and equally feasible, choice is i and tiv-.

In the latter case, bounding the component of the error in the direction of h'- yields

-Nsec4[biybcos + sin cos(0+ 65)] - n sinw < -.2 (26)
V m m

The nominal transformation

To summarize, we compute the nominal transformation, which is when the nominal image

points are correct, as follows:

1. Choose the coordinate system of the model so that the origin lies at (6, and so that A•

and Af both lie in the z = 0 plane.

2. Translate the model so that the origins align ( 112 denotes projection along the ý axis):

3. Rotate the model by angle 0 about i so that 112S11 lies along in'. 0 is given by:

( k,1ih0) =

f172M- x fin, i) = - i-L = sin 7P.

10



4. Rotate the model by angle 0 about the newly resulting M, which in this case will be in.

5. Rotate the model by angle -0 about fin. The angles 0 and 0 are found by solving

Cos 1- 2r/cosw cos• +r/2± :k(1 +172-27 CO 2 oW COS t)2 - 4772 sin2 wsin 2 t

s2 sin2W

for 4, and then solving

Cos 0 = sin w cos )
ir sin ý

sine = coss(cosw - 7coss)
17 sin t sin

for 0, where
mN
nM

and where only solutions for which 0 <_ coso :_ 1 are kept.

6. Project into the image, and scale by

MS V- • sec 0.

5 Uncertainty in the Implicit Parameters

Now we turn to the problem of bounding the range of uncertainty associated with the rotation

and scale parameters of the transformation, given that there are e-bounded positional errors

in the measurement of the image points.

To bound the rotational uncertainties, we will start with equation (15):

[cos 64)- tan 0 sin )- 12+ (1 + tan2 )(65b) 2 _<4 (-) 2 .

From this, a straightforward bound on the uncertainty in 4 is

167Ip 2E Icos 01 = Lecos .M Mf

To solve for bounds on 64, we use the following analysis. Given a value for 64, we have the

implicit equation

cos 60 - 1 - tan 4sin 6b = u (27)

where ji can range over:

- (52 2c ()2 _ sec- 2(p)1.

11



We can turn this into a quadratic equation in cos 60 and into a quadratic equation in

sin 6€, leading to two solutions for each variable, and hence a total of four possible solutions.

By enforcing agreement with the implicit equation, we can reduce this to a pair of solutions:

sin6b = -(1+p)sin4cos€+acos4/1 -(l+p) 2cos 2 ¢ (28)

cos 6¢ = (1+ p)cos2 0€+ a sin O4/1 - (1 + p) 2 cos 2 € (29)

where a = ±1. Note that in order for these equations to yield a real result for 64, we need the

argument to the square root to be positive. This yields additional constraints on the range of

legitimate values for p.

These two equations implicitly define a range of solutions for 64, as u varies. Since it -1

and € ' +• (since this case corresponds to m = 0), we can actually simplify this to:

--tan4) c € •( +'1 -- 1

tan b-0 tan C + (30)
1 + a tan €V(1+7 2 co. r -1

By substituting for the two values for a and by substituting for the limits on IL, we can

obtain a range of values for 64. In fact, we get two ranges, one for the case of a = 1 and one

for the case of a = -1. Only one of these two ranges, in general, will contain 0, and since

this must hold, we can exclude the second range. In fact, when p = 0, tan 64 = 0, and if we

substitute these values into equation (30), we find that

a = sgn(tan {1 if tan4Ž > 0;
a =sgntan) = -1 if tan < 0.

Note that we can simplify the implicit expressions for 6¢. If we let

v = arccos [(1 +,p) cos €]

then

6¢ = av -4). (31)

To solve for bounds on 6M, we do a similar analysis, using equation (26). We have the

implicit equation
N 60,_nSsec 0 [60 cos ý + sin c cos(0+60) sinwp p (32)

where
2E 2e

--- <•c<-.
m m

We can write this equation in the form:

cos 0 cos 60 - sin 0 sin 6 = a

12



and using exactly the same kind of analysis, we can solve for sin 60 and cos 68:

cos6O = acosO+asinOV/•-a2 (33)

sin60 = -asin0+acos/ýv- 1 fa2 (34)

where

o" = +11

nM sin w 6'0 M cos €
a =sin t cos tant + N sint

2E 2E
--2cos 0I <• _b_ -<•I cos 0J

m m
2c 2c

-- _< _< -,
m m

and where u is further constrained to keep the solutions real. Again, by substituting for the

two values for a, by substituting for the limits on 1L, and by substituting for the limits on 6b,

we can obtain a range of values for 6M.

Similar to the 64 case, we actually get two ranges, one for the case of a = 1 and one for

the case of a = -1. Again, in general only one of these two ranges will span 0, and since this

must hold, we can automatically exclude the second range.

Also similar to the 6¢ case, we can simplify the expression for 60. In particular, if we let

v = arccos a

then

60 = bv - 0. (35)

To bound the error in scale, we return to equation (12). If we let 6s denote the multiplicative

uncertainty in computing the scale factor s, i.e. the actual computation of scale is s6s, then

by equation (12), one inequality governing this uncertainty is

[m6scos(k+64)) m + 2 < 4 2 . (36)
[ cos€ cos4)

We can expand this out and solve for limits on 6s, which are given by

cos() + 64) cos ) - cos 4)/, (cos2 () + 64) + 62,) - 621
bs >- cos 2(0 + 64) + 6240

cos(4) + 64) cos s 0+COS 4) (cos2(4)+ 64) +b624) _ 62V
6s < s +(37)- cos2(0 + bo) + 620

Thus, given bounds on 64', from which we can get a range of values for 64, we can compute

the range of values for 6s.
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In sum, our task was to obtain reasonable bounds on the errors in the six parameters of

the transformation, namely translation, 6ak,60,6.0 and 6s. The translation is known up to an

c-disc. For the rotations and scale, we used constraints that force M and N to project near

the uncertainty regions surrounding rif and fi, respectively. Specifically, let EM be the error

vector from Ai to the transformed and projected A9, and similarly for EN and fi. We first used

a constraint on the magnitude of fM in the direction of rAA to get bounds on 6b. Then, using

the bounds on 60 plus a more general constraint on the magnitude of E9M, we obtained a range

of values for 60. Next, we used the bounds on 60 again plus a constraint on the magnitude

of E.N in the direction of rn- to get a range of values for 60. Lastly, we bounded 6s using the

bounds on b4', M9, and the general constraint on the magnitude of EM.

Summary of Bounds on Parameters

To summarize, we have the following bounds on uncertainty in the transformation given c

uncertainty in the image measurements. The translation uncertainty is simply bounded by c.

The rotational uncertainty is:

161• 2cIcosol, (38)

and

sinbO = -(1 +u)sin0cos4o+sgn(tan4')cos4 o1- (1 +./) 2 cos2 0

cosbo = (1+p)cos2 0+ sgn(tan 0) sin O\/ - (1 + U) 2 cos 2 .0 (39)

subject to the constraint that:

-sec2 4(64)2  (2E,,,2 ) sec2 0 (6b)2,

and

cos60 = acosO+orsinOv'TT-a2

sin b0 = -a sin 0 + o cos v/1 -- a2 (40)

where

cT = +I

nM sin 6C b Mcos4
amN sin Ttan- + Nsin A

- IcosOI <64,,< ICos 0I

2c 2c-- </_ -Y ,
m m
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and where u is further constrained to keep the solutions real.

The uncertainty in scale is constrained by

cos(4* + 64) cos 0 - cosv ;7 (cos 2 (4* + 64) + 621p) - b2l,
- cos2 ( + 6b.) + 6 2 0

b < cos(4* + 6b) cos 0 + cos 'V/M- (cos 2(46 + 64b) + 62o) - 62, (41)

cos 2(0 + 6b) + 62(

We note that the bounds on the error for 6M and 6b are overly conservative, in that we

have not used all the constraints available to us in bounding these errors.

Constraints on the Analysis

All of the bounds computed are overestimates, up to a few reasonable approximations and

with the possible exception of the scale factor. To bring everything together, we now list and

discuss the approximations and overestimates.

In computing the formula for transforming and projecting a model point into the image,

we assumed that 6bifi < 1, so that we could use the small angle approximation, which gave

cos 6b - 1 and sin 6b-b b 6i, and so that we could drop higher order terms in 6b.

Next, we list the sources of our overbounds on the parameters. First, we used a constraint

that the error vector (Pm) for projection of A9 has magnitude at most 2c. This is a weaker

constraint than requiring the destination point of the transformed and projected M to be

within the c-circle surrounding the image point at the destination point of An.

The weak constraint on E9M was used directly to bound both 64b and 6s, but an even weaker

version was used to bound 6bt. The weaker version simply requires the magnitude of EM in the

direction of fna- to be at most 2E. Similarly, 60 was bounded with a constraint that forces the

magnitude of Av in the direction of ii-" to be at most 2c. One indication that the constraint

on EN is weak is that it is independent of 64*, the rotation about fn*1 .

Further, it should be observed that anothet source of overbounding was the treatment of

the constraints on fm and EN as independent. In actuality the constraints are coupled.

Finally, there is one place where we did not clearly overbound the rotation errors, which

are 6•b,60, and 6b. In computing their ranges of values, we used the nominal value of the scale

factor, whose differences from the extreme values of the scale factor may not be insignificant.

6 Using the Bounds

The bounds on the uncertainty in the 3D pose of an object, computed from three corresponding

model and image points, have a number of applications. They can be used to design careful

15



verification algorithms, they can be used to design error-sensitive voting schemes, and they

can be used to analyze the expected performance of recognition methods. In this section, we

consider all three such applications.

6.1 3D Hough transforms

We begin by considering the impact of the error analysis on pose clustering methods, such as

,the generalized Hough transform[2]. These methods seek to find solutions to the recognition

problem by the following general technique:

1. Consider a pairing of k-tuples of model and image features, where k is the smallest such

tuple that defines a complete transformation from model to image.

2. For each such pair, determine the associated transformation.

3. Use the parameters of the transformation to index into a hash space, and at the indexed

point, increment a counter. This implies that the pairing of k-tuples is voting for the

transformation associated with that index.

4. Repeat for all possible pairings of k-tuples.

5. Search the hash space for peaks in the stored votes, such peaks serving to hypothesize a

pose of the object.

While the generalized Hough transform is usually used for matching 2D images to 2D

objects undergoing rigid transformations in the plane, or for matching 3D objects to 3D

data, it has also been applied to recognizing 3D objects from 2D images (e.g. [24, 25, 15J).

In this case, each dimension of the Hough space corresponds to one of the transformation

parameters. Under a weak perspective imaging model these parameters (as we saw above)

are two translations, three rotations, and a scale factor. The method summarized at the end

of Section 4 provides one technique for determining the values of these parameters associated

with a given triple of model and image points.

In the case of perfect sensor data, the generalized Hough method generally results in

correctly identified instances of an object model. With uncertainty in the data, however, in

steps (2) and (3) one really needs to vote not just for the nominal transformation, but for the

full range of transformations consistent with the pairing of a given k-tuple (in this case triple)

of model and image points. Our analysis provides a method for computing the range of values

in the transformation space into which a vote should be cast:
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1. Consider a pairing 3-tuples of model and image features.

2. For each such pair, determine the associated transformation, using the method of Section

4 to determine the nominal values of the transformation, and using equations (38) (39)

(40) and (41) to determine the variation in each parameter.

3. Use the parameters of the transformation, together with the range of variation in each

parameter, to index into a hash space, and at the indexed point, increment a counter.

4. Repeat for all possible pairings of 3-tuples.

5. Search the hash space for peaks in the stored votes, such peaks serving to hypothesize a

pose of the object.

6.2 Effects of Error Sensitivity on the Hough Transform

Unfortunately, allowing for uncertainty in the data dramatically increases the chances of false

peaks in the vote in hash space, because each tuple of model and image points votes for a

(possibly large) range of transformations.

Earlier analysis of this effect [12] has shown that the sensitivity of the Hough transform as

a tool for object recognition depends critically on its redundancy factor, defined as the fraction

of the pose space into which a single data-model pairing casts a vote. This previous analysis

was done for 2D objects and 2D images, and for 3D objects and 3D images. Here we examine

the impact of this effect on using the Hough transform for recognizing 3D objects from 2D

images. We use the analysis of the previous section to determine the average fraction of the

parameter space specified by a triple of model and image points, given c-bounded uncertainty

in the sensing data. (In [12], experimental data from [251 were used to analyze the behavior,

whereas here we derive analytic values.)

To do this, we simply find the expected range of values for bo, as given by equation (16),

for b4, as given by equation (30), and for 68, as given by equations (33) and (34). We could

do this by actually integrating these ranges for some distribution of parameters. An easier

way of getting a sense of the method is to empirically sample these ranges. We have done this

with the following experiment. We created a set of model features at random, then created

sets of image features at random. We then selected matching triples of points from each set,

and used them to compute a transformation, and the associated error bounds. For each of the

rotational parameters, we measured the average range of variation predicted by our analysis.

The positional uncertainty in the sensory data was set to be c = 1,3 or 5. The results are

summarized in Table 1, where we report both the average range of uncertainty in angle (in
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_ 6b 6 64k 6s b7  bt b

Average .0503 .2351 .1348 .1781

Normalized .0080 .0374 .0429 .1215 1.284e- 5  1.257e- 5  1.961e- 11

Average .1441 .5336 .2708 .3644

Normalized .0229 .0849 .0862 .2485 1.676e- 4  1.131e- 4  4.710e-9

Average .2134 .7927 .3524 .4630

Normalized .0340 .1262 .1122 .3158 4.814e- 4  3.142e-4 4.777e- 8

Table 1: Ranges of uncertainty in the transformation parameters. Listed are the average range of uncertainty

in each of the rotation parameters and the range of uncertainty in the multiplicative scale factor. The ranges

are also normalized to the total possible range for each parameter (see text for details). Also indicated are 6,,

the redundancy in rotation, b, the redundancy in translation, assuming that the image dimension is D = 500,

and b, the overall redundancy. Tables are for e = 1, 3 and 5 respectively.

radians), and the average range normalized by 27r in the case of 0 and l and by 7r in the case

of 4' (since it is restricted to the range -7r/2 < _ • 7r/2).

The product of the three rotation terms, which we term b,, defines the average fraction of

the rotational portion of the pose space that is consistent with a pairing of model and image

3-tuples.

To get the overall redundancy factor (the fraction of the transformation space that is

consistent with a given pairing of model and sensor points), we must also account for the

translational and scale parameters. If D is the size of each image dimension, then the fraction

of the translational portion of pose space consistent with a given pairing of three model and

image points is
Dr2

In the examples reported in Table 1, we used a value of D = 500, where the largest possible

distance between model features in the image was 176 pixels.

To estimate the range of uncertainty in scale, we use the following method. Since the scale

factor is a multiplicative one, we use logs as the 'key' to index into the hash space, so that

when we account for uncertainty in scale, s6s is transformed into log s + log 6s. If we assume

that s9a. and stin denote the maximum and minimum allowed scale factors, then the fraction

of the scale dimension covered by the computed uncertainty range is

log 6Smax - log 6smin

log Smax - log 8 ain

In the case of the experiments described in Table 1, we used s,,mx = .13 and smin = .03.
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=1 3 5

Hough 1.984e- 15  1.447e- 12  3.101e-11

Estimate 1.961e- 11  4.710e- 9  4.777e-8

Table 2: Comparing fractions of the pose space consistent with a match of 3 image and model points. The

Hough line indicates the average size of such regions for different amounts of sensor uncertainty. The Estimate

line indicates the corresponding sizes using the uncertainty bounds on the transformation parameters derived

in the previous section.

The overall redundancy (fraction of the transformation space consistent with a given triple

of model and image points) is

b = brbtb.. (42)

Values for b are reported in Table 1.

For this particular example, one can see that while the uncertainty in 6b is quite small,

the uncertainty in the other two rotational parameters can be large, especially for large values

of E. The redundancy in translation is a bit misleading, since it depends on the relative size of

the object to the image. The uncertainty in scale, normalized to the total range of scale can

in principle be quite large, though this also depends on the total range of possible values.

Note how dramatically the redundancy jumps in going from c = 1 to f = 3.

Evaluating the analysis

We are overestimating the region of possible transformations, and one obvious question is

how bad is this overestimate. We can explore this by the following alternative analysis. We

are basically considering the following question: Given 3 model points and 3 matching image

points, what is the fraction of the space of possible transformations that is consistent with

this match, given c uncertainty in the sensed data? This is the same as asking the following

question: For any pose, what is the probability that that pose applied to a set of 3 model points

will bring them into agreement, modulo sensing uncertainty, with a set of 3 image points? If

D is the linear dimension of the image (or the fraction of the image being considered), then

this probability, under a uniform distribution assumption on image points, is

[7 (_L)2]3,(3

because the probability of any of the transformed points matching an image point is just the

probability that it falls within the c error disc, and by uniformity this is just the ratio of the

area of that disc to the area of the image region.
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The expression in equation (43) defines the best that we could do, if we were able to

exactly identify the portion of pose space that is consistent with a match. To see how badly

we are overestimating this region, we compare the results of Table 1 with those predicted by

this model, as shown in Table 2. One can see from this table that our approximate method

overestimates by about a factor of 1000. Considering this is distributed over a 6 dimensional

space, this implies we are overestimating each parameter's range by about a factor of 3. These

numbers are potentially misleading since they depend on the relative size of the object to the

image. Nonetheless, they give an informal sense of the difference between the ideal Hough case

and the estimates obtained by this method.

Using the analysis

Although these values may seem like an extremely small fraction of the 6 dimensional space

that is filled by any one vote for a pairing of 3-tuples, it is important to remember that under

the Hough scheme, all possible pairings of 3-tuples cast votes into the space, and there are

on the order of m 383 such tuples, where m is the number of known model features, and s is

the number of measured sensory features. By this analysis, each such tuple will actually vote

for a fraction b of the overall hash space. Even in the ideal limiting case of infinitesimal sized

buckets in the transformation space, there is likely to be a significant probability of a false

peak.

To see this, we can apply the analysis of [12]. In particular, the probability that a point in

the pose space will receive a vote of size j can be approximated by the geometric distribution,

p ., (1 +A) 3 +1  (44)

where A = m 3s3 b. The probability of at least I votes at a point is then

P>( = 1- =.(45)
j=0P + )

That is, this expression denotes the fraction of the cells in pose space that will have votes

at least as large as 1. In most recognition systems, it is common to set a threshold, t, on

the minimum size correspondence that will be accepted as a correct solution. Thus we are

concerned with the probability of a false positive, i.e. a set of at least t feature pairings

accidentally masquerading as a correct solution. Suppose we set this threshold by assuming

that a correct solution will have pairings of image features for t = fm of the model features,

where f is some fraction, 0 < f _• 1. Since we are using triples to define entries into the hash

table, there will be (') ;t x3 votes cast at any point that is consistent with a transformation
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13

f = .25 .5 .75 f=.25 .5 .75 f=.25 .5 .75
6 = 10-2 557 1114 1672 90 179 269 41 83 124

I0-3 487 974 1460 78 157 235 36 72 109

10-4 442 885 1327 71 142 213 33 66 99

Table 3:

Approximate limits on the number of sensory features, such that the probability of a false positive of size fm

is less than 6, shown for different fractions f, and different thresholds 6. The tables are for errors of c = 1, 3

and 5 respectively.

aligning x of the model features with image features. Thus, if we want the probability of a

false positive accounting for fm of the model features to be less than some bound 6, we need

T A---- UM), <6. (46)

Substituting for A and rearranging the equation leads to the following bound on the number

of sensory features that can be tolerated under these conditions:

3

S < (47)

Following the analysis of [12] we can use the series expansion

X (x In a)J
3x-0
j=O

together with a Taylor series expansion, to approximate this bound on s by:

S f [1 ~In I ,
im [bn 2Z [ ln*] [bin 11• (48)

Note that to a first order approximation, the limit on the number of sensory features that can

be tolerated, while keeping the probability of a false positive of size fm below some threshold

6 is independent of the number of model features m, and only depends on the redundancy b

(and hence the uncertainty E), the fraction f of the model to be matched, and the threshold 6.

To get a sense of the range of values for s, we chart in Table 3 the limiting values for s based

on equation (48) and using values for b from Table 1.

One can see from this that, except in the case of very small sensor uncertainty, the Hough

space very rapidly saturates, largely because of the m3s 3 number of cases that cast votes into
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the space. As a consequence, the 3D-from-2D Hough transform will perform well only if some

other process pre-selects a subset of the sensor features for consideration. Note that these

numbers are based on the redundancy values associated with our derived approximation for

the volume of Hough space associated with each pairing of model and image triples of features.

As we saw, in the ideal case, the actual volume of Hough space is smaller, by a factor of about

1000 (Table 2). This means that the values for the limits on sensor clutter in Table 3 in the

ideal case will be larger by roughly a factor of 10. (Of course, this also requires that one

can find an efficient way of exactly determining the volume of Hough space consistent with a

pairing of image and model features.) For the larger uncertainty values, this still leaves fairly

tight limits on the amount of sensory data that can be accomodated. This analysis supports

our earlier work [12], in which we showed using empirical data, that the Hough transform

works well only when there is limited noise and scene clutter.

6.3 3D Alignment

Alignment methods differ from pose clustering, or generalized Hough, methods in that the

computed transformation is directly applied to the model, and used to check for additional

corresponding model and image features. In order to analyze the effects of sensory uncertainty

on this type of recognition method, we need to know what happens when a model point is

transformed and projected into the image. That is, what is the range of positions, about the

nominal correct position, to which a transformed model point can be mapped? Determining

this allows us to design careful verification algorithms, in which minimal regions in the image

are examined for supporting evidence.

In this section, we describe how to use our analysis to bound the range of possible positions

of a given medel point that is projected into the image. In addition, we illustrate how the

bounding regions we compute compare to the true regions of uncertainty. Lastly, we look at

the implications of using our bounds to perform alignment-based recognition. In particular,

we compute the probability of a false positive match, which is when model points transformed

under an incorrect transform are aligned to random image points up to error.

A Simple Verification Algorithm

In the Alignment Method, pairs of 3 model and image points are used to hypothesize the pose

of an object in the image. In other words, a method such as the one described in section

4 is used to compute the transformation associated with this correspondence, and then that

transformation is applied to all model features, thereby mapping them into the image. To
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verify such an hypothesis, we need to determine which of the aligned features have a match in

the image. While this should really be done on edge features, here we describe a method for

verification from point features (the edge case is the subject of forthcoming work). The key is

to approximate the smallest sized region in which to search for a match for each image, such

that the correct match, if it exists, will not be missed. We can approximate such regions as

follows:

1. Decompose each model point P into the natural coordinate system, so that it transforms

as:
af +3f- + + on11'+

The transformation of the basis vectors is given by equations (9), (10) and (11). This

allows us to determine the position of the nominally transformed model point.

2. Select sample values for 6•b, at some spacing, subject to the conditions of equation (38).

3. For each value, use equations (39), (40) and (41) to compute bounds on the variation

in the other error parameters. This leads to a set of extremal variations on each of the

parameters.

4. For each collection of error values in this set, perturb the nominal transformation param-

eters, and compute a new position for the transformed model point. Take the difference

from the nominal point to determine an error offset vector.

5. Expand each error offset vector outward from the nominal point by an additional offset

of 2c to account for the translational uncertainty and the inherent uncertainty in sensing

the point.

6. Add each error vector to the nominal point in the image, and take the convex hull of the

result to get a good estimate of the range of feasible positions associated with a projected

model point.

7. Search over this region for a matching image point.

8. If sufficiently many projected model points have a match, accept the hypothesized pose.

An example of this is shown in Figure 2. The figure was created by taking a random set

of 3D points as a model, arbitrarily rotating and translating them, projecting them into the

image and scaling with a random scale factor between .05 and .1, and perturbing the result

randomly with error vectors of magnitude at most c, resulting in a set of corresponding data
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Figure 2:

Two examples of uncertainty regions, with perturbation of the data.

points. In this figure, the open circles represent a set of image points, each displayed as an

,E-disc. The process is to match 3 model points to 3 data points whose positions are known

up to c-circles. Then, the match is used together with the parameters of the transformation

to compute the uncertainty regions (displayed as polygons) and the crosses, which lie at the

nominal location of the model. Note that the image points corresponding to the model points

could fall anywhere within the polygons, so that simply searching an E-circle for a match would

not be sufficient.

One can see that the uncertainty regions vary considerably in size. To get a sense of this

variation, we ran a series of trials as above, and collected statistics on the areas associated

with each uncertainty region, over a large number of different trials of model and image points.

We can histogram the areas of the observed discs, in terms of 7r(2c) 2 (the size of the basic disc

of uncertainty). A sample histogram, normalized to sum to 1, is shown in Figure 3, and was

based on 10000 different predicted regions of uncertainty. For the case of c = 5, the expected

area of an uncertainty region is 2165 square pixels. For the case of c = 3, the expected area of

an uncertainty region is 1028 square pixels. For c = 1, the expected area is 195 square pixels.

In all cases, the maximum separation of image features was mm'.- = 176.

Using the analysis

One advantage of knowing the bounds on uncertainty in computing a transform is that they

can be used to overestimate the regions of the image into which aligned features project. This

gives us a way of designing careful verification systems, in which we are guaranteed to find a

correct corresponding image feature, if it exists, while at the same time keeping the space over

which to search for such features (and thus the number of false matches) relatively small. Of

course, we know that our estimates err on the high side, and it is useful to see how much our
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Figure 3:

Graph of the distribution of areas of uncertainty regions, as measured in the image, for the case of f = 3. The

horizontal axis is in units of r(2c) 2 . The vertical axis records the fraction of the distribution of uncertainty

regions with that size.

projected image regions overestimate the range of possible positions for matches

To do this, we have run the following experiment. We took a 3D model of a telephone,

and created an image of that model under some arbitrary viewing condition. We then chose a

corresponding triple of image and model features and used the method described here both to

determine the alignment transformation of the model and to determine our estimates of the

associated uncertainty regions for each feature, based on assuming e-discs of uncertainty in the

image features. For comparison, we took a sampling of points on the boundary of the E-disc

around each of the basis images points, computed the associated alignment transformation,

and projected each additional model features into the image. We collected the set of positions

for each projected model point as we allowed the basis points to vary over their c-discs, and

used this to create regions of uncertainty about each aligned point. This should be a very close

approximation to the actual region of uncertainty. We compare these regions to our estimated

regions in Figure 4. One can see that our method does overestimate the uncertainty regions,

although not drastically.

Finally, we can use our estimates of the uncertainty regions to estimate the probability

that a random pairing of model and image bases will collect votes from other model points.

That is, if we use a random alignment of the model and project the remaining transformed

model points into the image, on average each such point will define an uncertainty region of

the size computed above. If we consider an image of dimension D = 500, then the selectivity

of the method (i.e. the probability that each model point will find a potentially matching

image point in its uncertainty region) is 0.000781, 0.00411 and 0.00866 for c = 1,3 and 5
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Example b

Figure 4:

Comparison of ideal uncertainty regions with estimated regions. Each feature in the model is projected according

to the nominal transformation, as illustrated by the points. The dark circles show the ideal regions of uncertainty.

The larger enclosing convex regions show the estimated uncertainty regions computed by our method. Two

different solutions are shown.

respectively. By comparison, the selectivity for the case of a planar object in arbitrary 3D

position and orientation, for the same level of sensor uncertainty is 0.000117,0.001052 and

0.002911 respectively (Table 1 of [14]). Although they represent overestimates, these results

suggest that the selectivity of recognition methods applied to 3D objects should be only slightly

worse than when applied to 2D objects.

To see this, we can use the analysis of [14] to estimate limits on the number of image

features that can be tolerated, while maintaining a low false positive rate. Recapping from

that earlier work, the false positive rate is computed by the following method:

1. The selectivity of the method is defined by the probability that the uncertainty region

associated with a projected model point contains an image point, and this is just the

redundancy (fraction of the transformation space that is consistent with a given triple

of model and image points) b, as defined in equation ( 42).

2. Since each model point is projected into the image, the probability that a given model

point matches at least one image point is

P 1 _-(I _ ý)o-3

because the probability that a particular model point is not consistent with a particular
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---I =3 --5

f= .25 .5 .75 f= .25 .5 .75 f= .25 .5 .75
6 = 10-2 149 480 1069 30 93 205 16 45 98

10-3 139 457 1028 28 89 197 15 43 95

10-4 130 437 991 27 85 190 14 42 90

Table 4:

Approximate limits on the number of sensory features, such that the probability of a false positive of size fk is

less than 6, shown for different fractions f, and different thresholds 6. The tables are for errors of c = 1, 3 and

5 respectively, and for m = 200.

image point is (1 - W) and by independence, the probability that all s - 3 points are not

consistent with this model point is (1 _ )s-3.

3. The process is repeated for each model point, so the probability of exactly k of them

having a match is

qk = (mk 3)pk(l _ P)m-3. (49)

Further, the probability of a false positive identification of size at least k is

k-i
Wk - E 1- .

i=O

Note that this is the probability of a false positive for a particular sensor basis and a

particular model basis.

4. This process can be repeated for all choices of model bases, so the probability of a false

positive identification for a given sensor basis with respect to any model basis is

ek = 1 - (1 -wk)('). (50)

Thus, we can compute limits on s such that ek _< 6 where 6 is some threshold on the false

positive rate, and where k is taken to be fm for some fraction 0 < f :_ 1. In Table 4, we list

these limits, computed using equation (50) and values of b obtained from the ratio of areas

described in equation (42).

While these results give a sense of the limits on alignment, they axe potentially slightly

misleading. What they say is that if we used the derived bounds to compute the uncertainty

regions in which to search for possible matches, and we use no other information to evaluate a

potential match, then the system saturates fairly quickly. As we know from Figure 4, however,
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our method overestimates the uncertainty regions, and a more correct method, such as that

described earlier in which one uses sample of the basis uncertainty regions to trace out ideal

uncertainty regions for other points, would lead to much smaller uncertainty regions, smaller

values for the redundancy b, and hence a more forgiving verification system. Also, one could

clearly augment the test described here to incorporate additional constraints on the pose and

its uncertainty that can be obtained by using additional matches of model and sensory features

to further limit the associated uncertainty (e.g. given 4 pairs of matched points, use sets of 3

to compute regions of uncertainty in pose space, intersect these regions and use the result to

determine the poses uncertainty).

7 Summary

A number of object recognition systems compute the pose of a 3D object from using a small

number of corresponding model and image points. When there is uncertainty in the sensor

data, this can cause substantial errors in the computed pose. We have derived expressions

bounding the extent of uncertainty in the pose, given E-bounded uncertainty in the mea-

surement of image points. The particular pose estimation method that we analyzed is that

of [12, 13], which determines the pose from 3 corresponding model and image points under a

weak perspective imaging model. Similar analyses hold for other related methods of estimating

pose.

We then applied this analysis in order to analyze the effectiveness of two classes of recog-

nition methods that use pose estimates computed in this manner: the generalized Hough

transform and alignment. We found that in both cases, the methods have a substantial chance

of making a false positive identification (claiming an object is present when it is not), for even

moderate levels of sensor uncertainty (a few pixels).

Acknowledgments

The development and presentation of these results were considerably improved by observations

and comments from David Jacobs.

References

[1] Ayache, N. & O.D. Faugeras, 1986, "HYPER: A new approach for the recognition and positioning of

two-dimensional objects," IEEE Trans. Part. Anal. & Mach. Inteil., Vol. 8, no. 1, pp. 44-54.

28



[2] Ballard, D.H., 1981, "Generalizing the Hough transform to detect arbitrary patterns," Pattern Recognition

13(2): 111-122.

(3] Basri, R. & S. Ullman, 1988, "The Alignment of Objects with Smooth Surfaces," Second

Int. Conf. Comp. Vision, 482-488.

[4] Besl, P.J. & R.C. Jain, 1985, "Three-dimensional object recognition," ACM Computing Surveys, Vol. 17,

no. 1, pp. 75-154.

[5] Bolles, R.C. & R.A. Cain, 1982, "Recognizing and locating partially visible objects: The Local Feature

Focus Method," Int. J. Robotics Res., Vol. 1, no. 3, pp. 57-82.

(61 Bolles, R.C. & M. A. Fischler, 1981, "A RANSAC-based approach to model fitting and its application

to finding cylinders in range data," Seventh Int. Joint Conf. Artif. Intell., Vancouver, B.C., Canada,

pp. 637-643.

[7] Bolles, R.C. & P. Horaud, 1986, "3DPO: A Three-dimensional Part Orientation System," Int. J. Robotics

Res., Vol. 5, no. 3, pp. 3-26.

[81 Cass, T.A., 1988, "A robust parallel implementation of 2D model-based recognition," IEEE

Conf. Comp. Vision, Patt. Recog., Ann Arbor, MI, pp. 879-884.

[9] Cass, T.A., 1990, "Feature matching for object localization in the presence of uncertainty," MIT Al Lab

Memo 1133.

[10] Faugeras, O.D. & M. Hebert, 1986, "The representation, recognition and locating of 3-D objects,"

Int. J. Robotics Res. Vol. 5, no. 3, pp. 27-52.

[11] Grimson, W.E.L., 1990, Object Recognition by Computer: The role of geometric constraints, MIT Press,

Cambridge.

[12] Grimson, W.E.L. & D.P. Huttenlocher, 1990, "On the Sensitivity of the Hough Transform for Object

Recognition," IEEE Trans. PAMI 12(3), pp. 255-274.

[13] Grimson, W.E.L. & D.P. Huttenlocher, 1991, "On the Verification of Hypothesized Matches in Model-

Based Recognition", IEEE Trans. on Pattern Analysis and Machine Intelligence, 13(12) pp. 1201-1213.

[14] Grimson, W.E.L., D.P. Huttenlocher & D.W. Jacobs, 1992, "Affine Matching With Bounded Sensor

Error: A Study of Geometric Hashing and Alignment", Proceedings of the Second European Conference

on Computer Vision, pp. 291-306.

[15] Heller, A.J. & J.L. Mundy, 1990, "Benchmark Evaluation of a Model-Based Object Recognition System",

Proceedings DARPA Image Understanding Workshop, pp. 727-741.

[16] Huttenlocher, D.P. and S. Ullman, 1987, "Object Recognition Using Alignment", Proceedings of the First

International Conference on Computer Vision, pp. 102-111.

(17] Huttenlocher, D.P. & S. Ullman, 1990, "Recognizing Solid Objects by Alignment with an Image," In.

ter. Journ. Comp. Vision 5(2):195-212.

29



[181 Lamdan, Y., J.T. Schwartz & H.J. Wolfson, 1988a, "On Recognition of 3-D Objects from 2-D Images,"

IEEE Int. Con!. on Rob. Aut. pp. 1407-1413.

[19] Lamdan, Y., J.T. Schwartz & H.J. Wolfson, 1988b, "Object Recognition by Affine Invariant Matching,"

IEEE Conf. on Comp. Via. and Part. Recog. pp. 335-344.

[20] Lamdan, Y., J.T. Schwartz & H.J. Wolfson, 1990, "Affine Invariant Model-Based Object Recognition,"

IEEE Trans. Robotics and Automation, vol. 6, pp. 578-589.

[21] Lamdan, Y. & H.J. Wolfson, 1988, "Geometric Hashing: A General and Efficient Model-Based Recognition

Scheme," Second Int. Conf. on Comp. Vis. pp. 238-249.

[22] Lamdan, Y. & H.J. Wolfson, 1991, "On the Error Analysis of 'Geometric Hashing'," IEEE Conf. on Camp.

Via. and Patt. Recog. pp. 22-27.

[23] S. Linainmaa, D. Harwood, and L.S. Davis, "Pose Determination of a Three-Dimensional Object Using

Triangle Pairs", CAR-TR-143, Center for Automation Research, University of Maryland, 1985.

[24] T. Silberberg, D. Harwood and L.S. Davis, "Object Recognition Using Oriented Model Points," Computer

Vision, Graphics and Image Processing, Vol. 35, pp. 47-71, 1986.

[25] Thompson, D.W. & J.L. Mundy, 1987, "Three-dimensional model matching from an unconstrained view-

point," Proc. IEEE Int. Conf. Robotics Autom., Raleigh, NC, pp. 208-220.

30


